THE NIKODYM PROPERTY OF BOOLEAN ALGEBRAS AND CARDINAL INVARIANTS OF THE CONTINUUM

DAMIAN SOBOTA

A common issue in measure theory is to decide whether a sequence of Radon measures on a compact space convergent with respect to some topology is convergent with respect to a finer one. E.g. Nikodym proved that if K is the Stone space of a σ -complete Boolean algebra \mathcal{A} (i.e. K is extremely disconnected), then for any sequence (μ_n) of Radon measures on K the following holds:

if $\mu_n(A) \to 0$ for every clopen $A \subseteq K$ (pointwise convergence on \mathcal{A}), then $\int_K f d\mu_n \to 0$ for every $f \in C(K)$ (weak* convergence in $C(K)^*$);

On the other hand, if K is an infinite compact space containing a non-trivial convergent sequence (e.g. K is second-countable), then Nikodym's theorem does not hold.

Since every infinite σ -complete Boolean algebra has cardinality at least 2^{ω} and every infinite second-countable totally disconnected compact space contains a convergent sequence, it follows that the minimal cardinality \mathbf{n} of a Boolean algebra with the Nikodym property (i.e. such for which Nikodym's theorem holds) is a cardinal characteristics of the continuum. During the first part of my talk I will present the lower bounds for \mathbf{n} in terms of some classical cardinal characteristics (like \mathfrak{b} ...). The second (main) part will be devoted to the construction of an algebra with the Nikodym property and small cardinality (consistently less than 2^{ω}), i.e. to limiting \mathbf{n} from above. Analysing steps of the construction in terms of classical set-theoretical objects (such as dominating families, selective ultrafilters or non-meager subsets of \mathbb{R}) we will show how the cardinality of the obtained algebra is dependent on infinitary combinatorics.

KURT GÖDEL RESEARCH CENTER OF MATHEMATICAL LOGIC, VIENNA *E-mail address*: damian.sobota@univie.ac.at